Engineering Dirac electrons emergent on the surface of a topological insulator
نویسندگان
چکیده
The concept of the topological insulator (TI) has introduced a new point of view to condensed-matter physics, relating a priori unrelated subfields such as quantum (spin, anomalous) Hall effects, spin-orbit coupled materials, some classes of nodal superconductors, superfluid 3He, etc. From a technological point of view, TIs are expected to serve as platforms for realizing dissipationless transport in a non-superconducting context. The TI exhibits a gapless surface state with a characteristic conic dispersion (a surface Dirac cone). Here, we review peculiar finite-size effects applicable to such surface states in TI nanostructures. We highlight the specific electronic properties of TI nanowires and nanoparticles, and in this context we contrast the cases of weak and strong TIs. We study the robustness of the surface and the bulk of TIs against disorder, addressing the physics of Dirac and Weyl semimetals as a new research perspective in the field.
منابع مشابه
Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor
Superconductivity involving topological Dirac electrons has recently been proposed as a platform between concepts in high-energy and condensed-matter physics. It has been predicted that supersymmetry and Majorana fermions, both of which remain elusive in particle physics, may be realized through emergent particles in these particular superconducting systems. Using artificially fabricated topolo...
متن کاملStrain engineering Dirac surface states in heteroepitaxial topological crystalline insulator thin films.
The unique crystalline protection of the surface states in topological crystalline insulators has led to a series of predictions of strain-generated phenomena, from the appearance of pseudo-magnetic fields and helical flat bands to the tunability of Dirac surface states by strain that may be used to construct 'straintronic' nanoswitches. However, the practical realization of this exotic phenome...
متن کاملExplicit Derivation of Duality between a Free Dirac Cone and Quantum Electrodynamics in (2+1) Dimensions.
We explicitly derive the duality between a free electronic Dirac cone and quantum electrodynamics in (2+1) dimensions (QED_{3}) with N=1 fermion flavors. The duality proceeds via an exact, nonlocal mapping from electrons to dual fermions with long-range interactions encoded by an emergent gauge field. This mapping allows us to construct parent Hamiltonians for exotic topological-insulator surfa...
متن کاملStrong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator
Electrons with a linear energy/momentum dispersion are called massless Dirac electrons and represent the low-energy excitations in exotic materials such as graphene and topological insulators. Dirac electrons are characterized by notable properties such as a high mobility, a tunable density and, in topological insulators, a protection against backscattering through the spin-momentum locking mec...
متن کاملComposite Dirac liquids: parent states for symmetric surface topological order
We introduce exotic gapless states—‘composite Dirac liquids’—that can appear at a strongly interacting surface of a three-dimensional electronic topological insulator. Composite Dirac liquids exhibit a gap to all charge excitations but nevertheless feature a single massless Dirac cone built from emergent electrically neutral fermions. These states thus comprise electrical insulators that, inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2015